Wednesday, March 13, 2013

How Pathogens Fight Drugs - Technology Review

How Pathogens Fight Drugs - Technology Review: When attacked with antibiotics, bacteria can mutate rapidly in order to survive—it's what makes, for instance, the staph infection MRSA so dangerous. New research suggests that such bacterial evolution occurs even faster, and in a more predictable fashion, than anyone thought. Using a novel type of microfluidics chip, researchers have shown that bacteria can develop antibiotic resistance in less than 10 hours.

Rather than taking the conventional approach of testing the bacteria in a test tube, Robert Austin, a biophysicist at Princeton University, designed a microfluidics chip to simulate the complex chemical environments that bacteria experience in the real world. The chip contains over 1,000 tiny hexagonal chambers, each one a microhabitat connected to others by long, slim corridors.
Austin flowed nutrients around one side of the chip and a solution of the antibiotic ciprofloxacin around the other. The solutions diffused into the inner hexagons through nano-sized slits, building a landscape of different ecologies. "I call it the 'death galaxy'—a galaxy of different environments designed to be very stressful," Austin says. "And the question is, if we apply very high levels of antibiotics to this funny world, would we see the rapid evolution of resistance?"
Austin and colleagues began to see resistant strains emerge within five hours. After 10 hours, the resistant strains were populating even the most Cipro-saturated chambers.

The researchers also discovered that the evolution occurred predictably. Every time they ran the experiment, they got the same result, with the same four resistance-conferring mutations emerging over and over again. "It's surprising that it happens so quickly and in such a logical and repeatable manner," he says.

The same happens with R animals over time, when the environment favors cooperation or sharing knowledge about dangers then they form Ro cooperative herds. People also do this in Roy societies, they might try to survive as R by secrecy and deception, if it is too dangerous for this to succeed then they form Ro gangs to use numbers to protect themselves. Also high mutations lead to the same result, those less fit die off leaving the surviving mutations as R to grow exponentially.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.